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Abstract

The vibration and dynamic stability of a traveling sandwich beam are studied using the finite element
method. The damping layer is assumed to be linear viscoelastic and almost incompressible. The extensional
and shear moduli of the viscoelastic material are characterized by complex quantities. Complex-eigenvalue
problems are solved by the state-space method, and the natural frequencies and modal loss factors of the
composite beam are extracted. The effects of stiffness and thickness ratio of the viscoelastic and constrained
layers on natural frequencies and modal loss factors are reported. Tension fluctuations are the dominant
source of excitation in a traveling sandwich material, and the regions of dynamic instability are determined
by modified Bolotin’s method. Numerical results show that the constrained damping layer stabilizes the
traveling sandwich beam.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In order to reduce vibration-induced stress and displacement amplitudes in structures, the use
of thin constrained damping layers has become common practice in many industries. In three-
layered damped sandwich beams, the viscoelastic material undergoes considerable shear strain as
the structure bends, dissipating energy and attenuating vibration response. The damping property
of a sandwich beam with a viscoelastic core is usually expressed as the modal loss factor for the
corresponding vibration mode.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

b the width of the traveling beam
c axial moving speed of the traveling

beam

~c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12r3L2=E3h2

3

q
� c; non-dimensional

axial moving speed
Di the transverse thickness interpolation

matrix for Layer i

Ei the Young’s modulus of Layer i; i ¼

1; 2; 3
Gi the effective shear modulus of Layer

i; i ¼ 1; 2; 3
Gv;2 the shear modulus of the viscoelastic

material
hi thickness of Layer i; i ¼ 1; 2; 3
~hi hi=h3; non-dimensional thickness of

Layer i; i ¼ 1; 2
L length of the traveling beam
Le length of the element

NðxÞ the longitudinal thickness interpolation
matrix for Layer i

P external tension
Po static component of the external tension
Pt dynamic component of the external

tension
u;w axial and transverse displacement
Ue

i the nodal displacement vector of the
element e in Layer i

r the density of the traveling beam
Z the loss factor of the viscoelastic mate-

rial
Y frequency of the external tension

~Y YL2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3h2

3=12r3

q
; non-dimensional

frequency of the external tension
o the natural frequency of the traveling

sandwich beam

~o oL2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3h2

3=12r3

q
; non-dimensional

natural frequency of the beam
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Many authors have proposed analytical techniques that predict the performance of beams or
plates with constrained layers. Earlier theoretical works to sandwich structures with a viscoelastic
core could be traced back to Kerwin [1], Ross et al. [2], and Di Taranto [3]. They presented the
fourth- and sixth-order theories for the axial and bending vibrations of beams. Then, Mead and
Markus [4] refined and extended the theory of Di Taranto and treated beams with arbitrary
boundary conditions. The refined theory assumed that the upper layer bent in the transverse
direction exactly as the lower one and that the viscoelastic layer underwent pure shear and did not
change its thickness under deformation. Yan and Dowell [5] and Rao and He [6] adopted the
model of Mead and Markus to study the damping mechanism of the viscoelastic layer and Rao [7]
reformulated the sixth-order theory by an energy approach.

While the above efforts focused on analytical solutions of the viscoelastic sandwich beam, others
have developed finite element techniques to evaluate the performance of the damped structure of
constrained layers. Finite element models offer structural analysts the ability to model various
boundary conditions, complex loadings and non-uniform features such as material discontinuities
and point masses. By taking advantage of the finite element model, Johnson et al. [8] have developed
a three-dimensional model using the MSC/NASTRANs computer program. They discussed the
harmonically excited vibration of a sandwich beam. Zapfe and Lesieutre [9] proposed the discrete
layer finite element (DLFE) model for the dynamic analysis of composite sandwich beams with
integral damping layers. The DLFE model is free from the effects of shear locking, includes both
transverse and rotatory inertia and automatically enforces displacement continuity at layer interfaces.

When a structure is subjected to axial periodic loads, the forced response becomes dyna-
mically unstable under certain circumstances. Such an induced violent vibration is called
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the dynamic instability or parametric resonance. Bolotin [10] and Evan-Iwanowski [11] re-
ported comprehensive studies for the dynamic instability of mechanical components. The
Mathieu–Hill equation [10,12] is obtained while resolving the parametric vibration of a beam
that is subjected to a compressive dynamic force. The dynamic instability problems of a
viscoelastic structure have been widely investigated. Stevens [13] discussed the dynamic stability
of an initially straight, simply supported viscoelastic column subjected to a harmonically
varying axial load under the assumption that the simple spring-dashpot model adequately
represents a viscoelastic column material. The effects of the viscoelastic material behavior on the
dynamic instability of a viscoelastic column were studied both analytically and experimentally by
Stevens and Evan-Iwanowski [14]. Dost and Glockner [15] investigated the dynamic stability of
simply supported perfect columns made of a linearly viscoelastic material and subjected to an
axial periodic load. The solution of the integro-differential equation was obtained by means of
Laplace transforms. All the above vibration analyses consider dynamic instability problems of
stationary structures.

Reducing the vibration in an axially moving structure is an important engineering
problem in areas of chemical, textile, computer, and tape recorder industries. Wickert and
Mote [16] first reviewed literatures on the vibration and dynamic stability of axially moving
structures. Then, they investigated the transverse vibrations of traveling strings and beams,
and found the general solution of the system through modal analysis and Green’s function
method [17]. They further presented the solutions of an axially accelerating structure
by the method of state space and Rayleigh’s quotient, where the relation between frequencies
and transport speeds of a moving string was obtained [18]. For a belt driven by pulleys,
the parametric excitations are primarily caused by the belt defects and the torque pulses
generated in the driving mechanics. Then, the parametric instability in a traveling sandwich beam
is also considered.

The vibration analysis and dynamic instability problems of a traveling beam with a constrained
viscoelastic layer are investigated in the present studies. The traveling beam is assumed to be
simply supported at both ends and moving at a constant velocity. The DLFE model is adopted
to derive the finite element equations of motion for the three-layer composite beam. The
extensional shear moduli of the linear isotropic viscoelastic material layer are described by
the complex quantities. The effects of modulus ratio, and thickness of constrained layer and
the viscoelastic core layer on the natural frequencies and modal loss factors of an axial
moving sandwich beam are studied. Thereby, the dynamic stability problems of a traveling
sandwich beam are solved. Bolotin’s method is applied to determine the regions of dynamic
instability of the Mathieu–Hill equation with complex coefficients. The eigenvalue problems are
then solved by the modified complex eigensolution method. The influences of various parameters
on the dynamic stability of the traveling beam with a constrained damping layer treatment are
also investigated.

The rest of this paper consists of three sections. Section 2 presents the finite element
formulation, where discrete layer finite element, strain–displacement relation, kinetic and
strain energies, equations of motion, free vibration, and dynamic stability are addressed in
the stated order. The proposed method is implemented and results including characteristics
affecting the primary dynamic stability region are presented in Section 3. Section 4 contains the
conclusion.
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2. Finite element formulation

A sandwich beam traveling at a constant velocity c with tension P is considered. The beam
travels between two pulleys, which are separated by a distance L as shown in Fig. 1. The
constrained damping layer consists of two layers. The upper layer, designated as Layer 1, is a pure
elastic, isotropic and homogeneous constraining layer, and the middle layer, designated as Layer
2, is the linear viscoelastic material layer. Layer 2 is capable of dissipating vibratory motions. The
host beam, designated as Layer 3, is assumed to be undamped, isotropic and homogeneous. The
thicknesses of Layer 1, 2, and 3 are h1; h2; and h3; respectively, and perfect bonding at interfaces
between layers is assumed.

2.1. DLFE

The DLFE of Fig. 2(a) is adopted, where the beam element of length Le and thickness hi of
Layer i has seven degrees of freedom. They are displacements in the x direction, UA

i ; UA
iþ1; UB

i and
UB

iþ1; and transverse displacements, W A
i ; W B

i ; and W C
i : Fig. 2(b) shows the nodal degrees of

freedom for finite elements of Layer 1–3. Let wiðx; tÞ be the transverse displacement of Layer i at
ðx; tÞ: Assume that the transverse displacements are constant through the beam thickness. Then,
the transverse normal strain is zero. In addition, values of W A

i ; W B
i ; W C

i ; and wiðx; tÞ remain the
same for all Layers 1–3. Therefore, the subscript i of W A

i ; W B
i ; W C

i ; and wiðx; tÞ is dropped
hereafter.
P

c

Base

CL
VEM

b

Z

X

h1

h2

h3

P P

L

Fig. 1. A traveling beam with a constrained damping layer.
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Fig. 2. The discrete layer finite element. (a) A basic element, (b) a three-layer element.
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Let uiðx; tÞ and wðx; tÞ be the axial and transverse displacement field of Layer i at ðx; tÞ;
respectively, where uiðx; tÞ is the in-plane displacement of the interface between Layer i and i þ 1:
Then,

uiðx; z; tÞ

wðx; tÞ

( )
¼ DiðzÞ

Uiðx; tÞ

Uiþ1ðx; tÞ

W ðx; tÞ

8><
>:

9>=
>;; (1)

where Di is the transverse thickness interpolation matrix for Layer i as shown below

DiðzÞ ¼

z

hi

1�
z

hi

0

0 0 1

2
4

3
5: (2)

A further interpolation in the length direction allows displacements of the two interfaces and
the reference axis to be expressed in terms of the nodal degrees of freedom, i.e.,

Uiðx; tÞ

Uiþ1ðx; tÞ

W ðx; tÞ

8><
>:

9>=
>; ¼ NðxÞUi; (3)

where NðxÞ; the matrix of interpolation functions, and Ui; the vector of nodal displacements, are
given below.

NðxÞ ¼

m1 m2 0 0 0 0 0

0 0 m1 m2 0 0 0

0 0 0 0 n1 n2 n3

2
64

3
75; (4)

Ui ¼ fUA
i UB

i UA
iþ1 UB

iþ1 W A W C W Cg; (5)
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m1 ¼ 1�
x

Le

� �
; m2 ¼

x

Le

� �
; n1 ¼ 2

x

Le

� �2

� 3
x

Le

� �
þ 1; (6a2c)

n2 ¼ �4
x

Le

� �2

þ 4
x

Le

� �
and n3 ¼ 2

x

Le

� �2

�
x

Le

� �
: (6d2e)

The vector Ui contains all of the nodal degrees of freedom required to define the displacement
field within Layer i. Combing Eqs. (1), (3) and (4) results in internal layer displacements expressed
in terms of the nodal degrees of freedom as follows:

uiðx; z; tÞ

wðx; tÞ

( )
¼ DiðzÞNðxÞUi: (7)

2.2. Strain–displacement relation

The linear strain–displacement relations for the beam are

�x ¼
qu

qx
; (8a)

�z ¼
qw

qz
¼ 0 (8b)

and

gxz ¼
qu

qz
þ

qw

qx
: (8c)

The transverse normal strain �z equals zero since the transverse displacement is assumed
to be the same for all three layers in the laminate. Substitution of Eq. (7) into Eq. (8)
yields the expression of the strain field in Layer i in terms of the nodal degrees of freedom as
shown below.

�x

gxz

 !
¼ ðDiðzÞ N0ðxÞ þDi;z NðxÞÞUi; (9)

Di;z ¼

0 0 0
1

hi

�
1

hi

0

2
4

3
5 and N0ðxÞ ¼

d

dx
NðxÞ: (10)

Implicitly, Eq. (9) implies that the shear strain in a given layer is constant in the thickness
direction and varies linearly along the length of the element. Eq. (9) can be written in a more
compact form as follows:

�x

gxz

( )
¼ Biðx; tÞUi: (11)
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2.3. Kinetic and strain energies

The velocity of the traveling beam can be expressed as follows [19]:

v ¼
qu

qt
þ c þ c

qu

qx

� �
iþ

qw

qt
þ c

qw

qx

� �
k; (12)

where u and w are the axial and transverse displacements of the traveling beam. The kinetic energy
of the traveling beam is given as

T ¼
1

2

I
V

rv 
 vdV ¼
rb

2

Z
A

qu

qt
þ c 1þ

qu

qx

� �� �2
þ

qw

qt
þ c

qw

qx

� �2
( )

dA; (13)

where r is the density and b is the beam width. The potential energy of the traveling beam is given
below.

V ¼
b

2

Z
A

s�dA þ

Z L

o

P
qu

qx
þ

1

2

qw

qx

� �2
" #

dx; (14)

where the first term is the strain energy of the beam, and the second term is the work done by the
tension.

We substitute Eqs. (7) and (11) into Eqs. (13) and (14); the kinetic energy of the element e in
Layer i is obtained as follows:

Te
i ¼

rb

2

Z hi

0

Z Le

0

½c2 þ 2c2ðL3Þ
TUe

i þ 2cL2iL3U
e
i þ 2cL1iL3

_U
e

i

þ ðL2iU
e
i Þ

Tc2ðL2iU
e
i Þ þ ðL1i

_U
e

i Þ
T
ðL1i

_U
e

i Þ þ 2ðL2iU
e
i Þ

TcðL1i
_U

e

i Þ�dxdz; ð15Þ

where Ue
i is the displacement vector of the element e in Layer i and the matrices L1i; L2i; and L3

are

L1i ¼ DiðzÞNðxÞ; L2i ¼ FðzÞN0ðxÞ and L3 ¼
1

0

� �
: (16a2c)

The potential energy of the element e in Layer i is

Ve
i ¼

b

2

Z hi

0

Z Le

0

ðBiU
e
i Þ

TEiðBiU
e
i Þdxdz

þ
P

hi

Z hi

0

Z Le

0

L3L2iU
e
i þ

1

2
ðL4L2iU

e
i Þ

T
ðL4L2iU

e
i Þ

� �
dxdz; ð17Þ

where

Ei ¼
Ei 0

0 Gi

" #
and L4 ¼

0

1

� �
: (18)

Ei is the Young’s modulus, and Gi is the effective shear modulus. By assuming that the material of
Layer 2 is isotropic linear viscoelastic and almost incompressible, the effective shear modulus
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of Layer 2, i.e., G2; is further expressed as follows:

G2 ¼ Gn;2ð1þ jZÞ; (19)

where Gv;2 and Z are the shear modulus and loss factor of the viscoelastic material, respectively,
and j ¼

ffiffiffiffiffiffiffi
�1

p
: It is noted that Layers 1 and 3 are non-viscoelastic. Therefore Z1 ¼ Z2 ¼ 0; G1 ¼

Gv;1; and G3 ¼ Gv;3:

2.4. Equations of motion

Hamilton’s principle states

d
Z t2

t1

ðTe
i � Ve

i Þdt ¼ 0: (20)

It is used to derive the following element dynamic equilibrium equations in matrix form:

Me
i
€U

e

i þ C
e
i
_U

e

i þ ðK
e;L
i þ K

e;c
i þ K

e;P
i ÞUe

i ¼ 0; (21)

where the elemental mass matrix Me
i ; stiffness matrices Ke;L

i ; Ke;c
i ; and Ke;P

i of Layer i are given
below.

Me
i ¼ rb

Z hi

0

Z Le

0

LT
1iL1i dxdz; (22a)

Ce
i ¼ rb

Z hi

0

Z Le

0

ðLT
1iL2i � L

T
2iL1iÞdxdz; (22b)

K
e;L
i ¼ b

Z hi

0

Z Le

0

BT
i EiBi dxdz; (22c)

K
e;c
i ¼ �rb

Z hi

0

Z Le

0

c2LT
2iL2i dxdz (22d)

and

K
e;P
i ¼

P

hi

Z hi

0

Z Le

0

ðL2iL4Þ
T
ðL2iL4Þdxdz: (22e)

By applying the symbolic algebra package of Mathematicas; closed-form solutions have been
obtained for the layer stiffness and mass matrices.

The layer-level matrices must be transformed to element nodal coordinates before they
can be combined to form the element stiffness and mass matrices. The following
transformation is applied:

Ue
i ¼ Te

iU; (23)

where U is the global nodal coordinate vector.
By assembling the contribution of all elements, the global finite element equation is obtained as

follows:

M €Uþ C _Uþ KU ¼ 0; (24)
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where the global mass matrix M; damping matrix C; and stiffness matrix K are given below.

M ¼
X3
i¼1

XN

e¼1

TeT
i M

e
iT

e
i

 !
; (25a)

C ¼
X3
i¼1

XN

e¼1

TeT
i C

e
iT

e
i

 !
(25b)

and

K ¼
X3
i¼1

XN

e¼1

TeT
i ðK

e;L
i þ K

e;c
i þ K

e;P
i ÞTe

i

 !
; (25c)

where N is the number of elements at each layer.

2.5. Free vibration

The solution to Eq. (24) takes the following form:

U ¼ uekt; (26)

where l is a complex number. By substituting Eq. (26) into Eq. (24), we obtain

ðl2Mþ lCþ KÞu ¼ 0: (27)

Eq. (27) has non-zero solutions for l provided

jl2Mþ lCþ Kj ¼ 0: (28)

For a multiple degrees of freedom system, it is inconvenient to handle Eq. (28) and it is
transformed into the following state-space form:

�M�1C �M�1K

I 0

" #
w ¼ Lw; (29)

where w ¼ f _U UgT; I is the identity matrix, and L is a complex number. Eq. (29) corresponds
to a standard eigenvalue problem and can be solved by the modified complex
eigensolution method [20]. The natural frequency and modal loss factor of the sandwich beam
system are then given by

o ¼ ImðLÞ and Z ¼ 2
ReðLÞ
ImðLÞ

: (30)

2.6. Dynamic stability

Let the external force P be a periodic tension of the following form:

P ¼ Po þ Pt cosYt; (31)
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where Po and Pt are constants, andY is the frequency of the external load. Then the external load-
induced geometric stiffness matrix can be expressed as

KP ¼ KP
o þ KP

t cosYt; (32)

where KP
o and KP

t are the static and dynamic geometric stiffness matrices, respectively.
Substituting Eq. (32) into Eq. (24), we can obtain

M €Uþ C _Uþ ðKL þ Kc þ KP
o þ KP

t cosYtÞU ¼ 0: (33)

Eq. (33) is a Mathieu equation with complex coefficients. Bolotin’s method is employed to
determine the regions of dynamic instability, and the stability boundaries are constructed by
periodic solutions of periods T and 2T ; where T ¼ 2p=Y: In general, the solutions with period 2T
are dominating. The first-order approximation of the periodic solutions with period 2T is given
below.

UðtÞ ¼ a sin
Yt

2

� �
þ b cos

Yt

2

� �
; (34)

where a and b are constants. We substitute Eq. (34) into Eq. (33) and equate the coefficients of
corresponding sinðYt=2Þ and cosðYt=2Þ terms which use complex notation as indicated by Stevens
and Evan-Iwanowski [14]. We set the first-order determinant to zero and obtain the following
result:

KL;r þ Kc;r þ KP;r
o �

1

2
KP;r

t �
Y2

4
M �KL;i � Kc;i � KP;i

o �
1

2
KP;i

t �
1

2
CY

KL;i þ Kc;i þ KP;i
o �

1

2
KP;i

t þ
1

2
CY KL;r þ Kc;r þ KP;r

o �
1

2
KP;r

t �
Y2

4
M

���������

���������
¼ 0; (35)

where the second superscripts r and i of the stiffness matrices denote the real and imaginary part
of matrices, respectively. Eq. (35) is the equation of the boundary frequencies and from which the
stability–instability boundaries are obtained. Note that the complex-valued terms of stiffness
matrices are due to the strain energy terms of the viscoelastic material layer. Because the terms CY
are dependent on frequency, these equations form two eigenvalue problem systems with
frequency-dependent parameters. The modified complex eigensolution method [20] is employed to
solve Eq. (35).
3. Numerical result

The method presented in this paper has been implemented. For validation, results are obtained
for simple models and compared with those obtained previously using existing methods. Every
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layer is modeled using 16 elements, and two sets of parameter values of material properties and
beam geometry previously employed by Daya and Potier-Ferry [21] and Lall et al. [22] are
adopted. Table 1 contains those parameter values. Each set of parameter values is applied to
calculating the first three natural frequencies and modal loss factors of the stationary composite
beam without axial load. Table 2 lists the results of our method and the corresponding ones
previously obtained by Daya and Potier-Ferry [21] and Lall et al. [22], respectively. The good
agreement compared with the previously published results in Table 2 indicates that the present
method is accurate for the composite beam. For further validation, we also calculate fundamental
natural frequencies of the traveling beam without a constrained damping layer using our method
and Wickert’s method [23]. Table 3 contains example results at various traveling velocities. It is
seen that the results agree with each other very well, and the validation of our method gets
supported solidly.

To accommodate the discussion of the dynamic behavior of a traveling beam with a constrained
damping layer, we introduce the following non-dimensional parameters.

~h1 ¼
h1

h3
; ~h2 ¼

h2

h3
; ~L ¼

h3

L
; ~r1 ¼

r1

r3

; ~r2 ¼
r2

r3

; ~E1 ¼
E1

E3
; (36a2f)

~E2 ¼
Re E2ð Þ

E3
; ~c ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12r3L2

E3h2
3

s
; ~po ¼

12PoL2

E3bh3
3

; ~o ¼
oL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E3h2
3=12r3

q ; (36g2j)

~pt ¼
12PtL

2

E3bh3
3

and ~Y ¼
YL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E3h2
3=12r3

q : (36k2l)

Non-dimensional frequencies and modal loss factors of a traveling beam with a constrained
damping layer are plotted against the thickness of VEM layer in Fig. 3, where boundary
conditions appropriate for a beam of simply support at both ends are applied.
Table 1

Adopted parameter values of composite beams

Ref. [21] Ref. [22]

E1 and E3 (Pa) 6:9� 1010 207� 109

G2 (Pa) 6:9� 105 2:615� 105

Z2 0.1 0.38

r1 and r3 ðkg=m3Þ 2799 7800

r2 ðkg=m3Þ 968.1 2000

h1 (mm) 1.524 0.5

h2 (mm) 0.127 2.5

h3 (mm) 1.524 5

L (mm) 177.8 300

b (mm) 12.7 —

Boundary conditions Clamped-free Simply supported on both end
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Table 2

Natural frequencies and loss factors of stationary composite beams

Natural frequency (Hz) Modal loss factor

Present Ref. [21] Present Ref. [21]

Mode 1 64.1 64.1 2:81� 10�2 2:82� 10�2

Mode 2 296.8 296.4 2:42� 10�2 2:42� 10�2

Mode 3 745.8 743.7 1:53� 10�2 1:54� 10�2

Natural frequency (Hz) Modal loss factor

Present Ref. [22] Present Ref. [22]

Mode 1 741 741 4:5� 10�3 4:5� 10�3

Mode 2 2952 2948 1:1� 10�3 1:1� 10�3

Mode 3 6647 6630 5:1� 10�4 5:1� 10�4

Table 3

Comparison to Wicker’s result [23] in natural frequencies of traveling beams at various axially moving velocities

(E ¼ 70� 109 Pa; r ¼ 2700kg=m3; h ¼ 0:79mm; L ¼ 381mm; P ¼ 5:0397Nt; ccr ¼ 13:6m=s)

Normalized speed c=ccr 0 0.2 0.4 0.6 0.8 1.0

Present (Hz) 17.841 17.367 15.921 13.413 9.523 0

Wickert (Hz) 17.848 17.366 15.920 13.422 9.531 0

W.-P. Yang et al. / Journal of Sound and Vibration 285 (2005) 597–614608
It is revealed in Fig. 3 that the fundamental frequency of the traveling beam decreases as the
thickness of the viscoelastic layer ~h2 increases. On the other hand, the modal loss factor reduces as
~h2 increases from 0þ: It is observed that the reduction rate of the modal loss factor decreases to
zero where the modal loss factor reaches its minimum. Then, the modal loss factor starts to
increase as ~h2 continues to increase. This is because the stiffness of the VEM layer is very small
when the ~h2 increases from 0þ and the effect of the mass is greater than the effect of stiffness. Non-
dimensional frequencies and modal loss factors of a traveling beam are plotted against the
thickness of the constrained layer ~h1 in Fig. 4. It is observed that the fundamental frequency
decreases as the thickness of the constrained layer increases. On the other hand, the modal loss
factor increases with ~h1:

Non-dimensional frequencies and modal loss factors are plotted against the modulus ratio of
viscoelastic core ~E2 in Fig. 5, where ~E2 is in the logarithmic scale. It is shown that the modulus ~E2

has significant influences on the non-dimensional frequencies and modal loss factors. As ~E2

increases, three distinct regions are observed from plots of non-dimensional frequencies. From left
to right, separately they are: very compliant, transition, and very stiff. On the other hand, the
modal loss factor increases as ~E2 increases from 0þ: It reaches the maximum before reversing the
increase trend. Non-dimensional frequencies and modal loss factors of a traveling composite
beam are plotted against modulus ratios of constrained layers ~E1 in Fig. 6. It is observed that the
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Fig. 3. Non-dimensional first natural frequencies ~o (in solid lines) and modal loss factors Z (in dash lines) vs. thickness

ratio of VEM layer ~h2 ( ~L ¼ 0:01; ~r1 ¼ ~r2 ¼ 1; ~h1 ¼ 0:1; ~E1 ¼ 1; ~E2 ¼ 10�6; Z2 ¼ 0:5; ~po ¼ 100).
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modulus ratio of constrained layer ~E1 does not impose a detectable effect on non-dimensional
frequencies until ~E1 reaches some value around 100. The phenomenon is consistent with the fact
that higher values of ~E1 would greatly increase the stiffness of the axial moving beams.
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To examine the dynamic stability of traveling beams with constrained layer damping, we plot in
Fig. 7 the effect of modulus ratio of the constrained layer on the primary dynamic instability
region for various axial moving velocities, where ~c ¼ 0:5; 1 and 1.5 are included. It is observed
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Fig. 5. Non-dimensional first natural frequencies ~o (in solid lines) and modal loss factors Z (in dash lines) vs. modulus

ratio of VEM layer ~E2 ( ~L ¼ 0:01; ~r1 ¼ ~r2 ¼ 1; ~h1 ¼ ~h2 ¼ 0:1; ~E1 ¼ 1; Z2 ¼ 0:5; ~po ¼ 100).
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that resonance frequencies shift higher as the modulus ratio ~E1 becomes larger regardless of the
traveling velocity. In addition, increasing the modulus ratio ~E1 results in a smaller instability
region. The influence of modulus ratio of the viscoelastic core ~E2 on the instability region is shown
Fig. 7. Primary instability regions vs. modulus ratio of constrained layer ~E1: (a) ~c ¼ 0:5; (b) ~c ¼ 1; (c) ~c ¼ 1:5 ( ~L ¼ 0:01;
~r1 ¼ ~r2 ¼ 1; ~h1 ¼ ~h2 ¼ 0:1; ~E2 ¼ 10�5; Z2 ¼ 0:5; ~po ¼ 100).
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in Fig. 8, where ~c ¼ 0:5; 1 and 1.5 are included. Unlike Fig. 7 where a larger ~E1 results in a smaller
instability region, Fig. 8 reveals that the system is the most stable at ~E2 ¼ 10�5; not at the smaller
~E2 ¼ 10�6 nor at the larger ~E2 ¼ 10�4:
Fig. 8. Primary instability regions vs. modulus ratio of VEM layer ~E2: (a) ~c ¼ 0:5; (b) ~c ¼ 1; (c) ~c ¼ 1:5 ( ~L ¼ 0:01;
~r1 ¼ ~r2 ¼ 1; ~h1 ¼

~h2 ¼ 0:1; ~E1 ¼ 1; Z2 ¼ 0:5; ~po ¼ 100).
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~h2 ¼ 0:1; Z2 ¼ 0:5; ~pt= ~po ¼ 0:05).
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Because the primary instability region is dominant, the width of the primary instability region
D~y is used as a measure of instability. Plots of D~y vs. modulus ratio of ~E1 and ~E2 are shown in Fig.
9. The minimum D~y values occur at ~E1 ¼ 20 and ~E2 ¼ 5� 10�4:
4. Conclusion

The vibration and dynamic instability analysis of a traveling beam with a constrained layer
damping has been presented. The discrete layer finite element method, complex representations of
the viscoelastic materials, Bolotin’s method, and the modified complex eigensolution method are
used in the analysis. From the numerical results, the thicker VEM and constrained layers the
traveling beam will get the highest loss factors when ~E1 ¼ 1 and ~E2 � 10�5: The instability regions
of a traveling beam with constrained layer damping can be minimized by choosing a suitable
modulus ratio of core layer and constrained layer. Sometimes, the constrained damping layer can
be replaced by piezoelectric material, and the dynamic behavior of the active piezoelectric
composite beam with axial moving velocity will be an interesting topic.
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